Answer:
Option A
Explanation:
Mechanical waves requires some medium to travel through. They travel faster in the dense medium as compared to a free medium.
The speed of a mechanical wave is fastest in the solid medium and the slowest in the gaseous medium. Hence, as the wave traverses from gaseous medium to the solid medium, its speed increases.
Thus, option A is correct
Answer:
30 metres.
Explanation:
Given that a red ball moves horizontally in a 30 m long tube.
Displacement is the distance travelled in a specific direction. It has both magnitude and direction.
Since the motion is horizontal, it moves is a certain direction.
Within the stipulation of time, the displacement will be the distance covered in the horizontal direction which is 30 metres.
Therefore, the displacement of the motion of the red ball is 30 metres.
The other person who answered this is wrong btw
Technically this is a Biology question;
The 'amount' we can see depends on how much light can get through our pupil to hit our retina.
When there is a lot of light the pupil is small; it doesn't need to be big to let a lot of light in.
When we move to a dark space there is much less light, so the pupil 'dilates' to let enough light so we can see properly.
The period in which one cant see is simply when the pupil hasn't had time to change shape yet so doesn't let in enough light.<span />
Answer: Energy can neither be created nor destroyed, rather it is converted from one form to another
Explanation:
The principle of conversation of energy explains how energy is conserved in nature by being converted from one form to another such that no energy is created nor destroyed.
Practical examples include:
- electrical pressing iron that converts electrical energy to heat energy
- solar panels that converts solar energy to electrical energy
- Car batteries that converts chemical energy to light energy etc