Assuming that the can is motionless, we can then assume that the vertical component of T = mg and that Fe = the horizontal component of T.
<span> Since T itself is larger than it's vertical or horizontal components separately, then T is greater than all the forces.</span>
Answer:
a) 
b) 
Explanation:
a)
Given:
amount of heat transfer occurred,
initial temperature of car, 
final temperature of car, 
We know that the change in entropy is given by:

(heat is transferred into the system of car)

b)
amount of heat transfer form the system of house,
initial temperature of house, 
final temperature of house, 



Answer:
<h3>The answer is 36,400 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 1,300 kg
speed / velocity = 28 m/s
We have
momentum = 1,300 × 28
We have the final answer as
<h3>36,400 kgm/s</h3>
Hope this helps you
Answer:
the object's mass is 50 kg
Explanation:
We use Newton's second law to solve for the mass:
F = m * a , then m = F / a
In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:
m = w / a = 650 N / 13 m/s^2 = 50 kg
Then, the object's mass is 50 kg.