<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>
The scientist who discovered the two elements radium and polonium would be Marie Curie in 1898.
Hope this helps!
Answer:
0.82 mm
Explanation:
The formula for calculation an
bright fringe from the central maxima is given as:

so for the distance of the second-order fringe when wavelength
= 745-nm can be calculated as:

where;
n = 2
= 745-nm
D = 1.0 m
d = 0.54 mm
substituting the parameters in the above equation; we have:

= 0.00276 m
= 2.76 × 10 ⁻³ m
The distance of the second order fringe when the wavelength
= 660-nm is as follows:

= 1.94 × 10 ⁻³ m
So, the distance apart the two fringe can now be calculated as:

= 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m
= 10 ⁻³ (2.76 - 1.94)
= 10 ⁻³ (0.82)
= 0.82 × 10 ⁻³ m
= 0.82 × 10 ⁻³ m 
= 0.82 mm
Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm
Answer:
anyone know this or will i have to get my brother
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:
