Change in thermal energy not always cause it's temperature change. It is the situation when water reaches either at 0 C or 100 C then thermal energy doesn't cause change in temperature instead it changes the state of matter.
In short, Your Answer would be "True"
Hope this helps!
He answer is A. <span>encourage agricultural usage in the watershed
if you want to read it for yourself go to
www.nature.org/ourinitiatives/regions/northamerica/unitedstates/indiana/journeywithnature/watersheds...
hope this helps you!!</span>
Base in your question about the magnetic field of the Earth near the equator where as its almost horizontally to the north and has magnitude of B=0.5x10^-4t, the answer is <span>Velocity of electron will be westwards.</span>
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg
The zeroth law of thermodynamics states that if two thermodynamic systems each are in thermal equilibrium with a third, then they are in thermal equilibrium with each other.