Answer:
a. Concave down
Linear increasing
b. Increases the reaction rate
c. The reaction approaches the saturation point of the enzyme
Explanation:
a. For the reaction with enzyme, the shape is concave down. The action of the enzyme on the preferred substrate is initially very rapid and decreases as the enzyme becomes saturated and the ratio of products to substrate increases to approach an equilibrium rate of reaction
For the reaction without enzyme, the shape is linear and increasing. Increase in the concentration of the substrate will increase the number of effective collisions that lead into product formation leading to an increased rate of the chemical reaction
b. The enzyme increases the proportion of effective combination of substrates to form the products
c. The curve of the reaction with enzyme flattens out because as the concentration of the substrate increases while that of the enzyme remains the same, the enzyme becomes saturated and less able to increase the rate of the reaction of the excess substrate.
YYe the answer is mechanical
A: BE has more ionization energy than LI
B: CA has more ionization energy than BA.
C: NA has more ionization energy than K
D: AR has more ionization energy than P
E: CI has a more ionization energy than SI
F: LI has more ionization energy than K
If any of these are wrong feel free to correct me in the comments.
Answer:
Most common insulation materials work by slowing conductive heat flow and--to a lesser extent--convective heat flow. Radiant barriers and reflective insulation systems work by reducing radiant heat gain. To be effective, the reflective surface must face an air space.
Explanation:
To be effective, the reflective surface must face an air space.
Given:
Half life(t^ 1/2) :30 years
A0( initial mass of the substance): 200 mg.
Now we know that
A= A0/ [2 ^ (t/√t)]
Where A is the mass that remains after t years.
A0 is the initial mass
t is the time
t^1/2 is the half life
Substituting the given values in the above equation we get
A= [200/ 2^(t/30) ] mg
Thus the mass remaining after t years is [200/ 2^(t/30) ] mg