This is a limitation of kinetic-molecular energy. Right?
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Because Florida is wet and humid, while California is dry and non-humid. Florida also contains lots of lakes which evaporate to create thunderstorms.
Answer:
The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s
Explanation:
m= 55.6 g = 0.0556 kg
t= 2.8 ms = 2.8 * 10⁻³ s
F= 1290 N/ms * t - 330 N/ms² * t²
F= 1024.8 N
F*t= m * V
V= F*t/m
V= 51.6 m/s