From convection of magma under the earths crust makes the plates slowly move and as they move over time they build up potential energy from the different plates grinding against each other and after so long the plates will lose there grip on each other and release the potential energy they've been building up for so long as kinetic energy causing what you know as an earthquake hope this helps please give brainliest
Electromagnetic waves are waves that consist of vibrating electric and magnetic fields. They transfer energy through matter or across space. The transfer of energy by electromagnetic waves is called electromagnetic radiation. ... The two vibrating fields together form an electromagnetic wave.
Answer:
f = 878,080 N
Explanation:
mass of pile driver (m) = 2100 kg
distance of pile driver to steel beam (s) = 5 m
depth of steel driven (d) = 12 cm = 0.12 m
acceleration due to gravity (g0 = 9.8 m/s^{2}
calculate the average force exerted on the pile driver by the beam.
- from work done = force x distance
- work done = change in potential energy of the pile driver
- equating the two equations above we have
force x distance = m x g x (s - d)
f x 0.12 = 2100 x 9.8 x (5- (-0.12))
d = - 0.12 because the steel beam went down at we are taking its
initial position to be an origin point which is 0
f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12
f = 878,080 N
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer:
) pulls the ladder in the direction opposite
Explanation:
This is in line with lenz law that states that the magnetic field induced in a conductor act to oppose the magnetic field that produced it