Answer:
kg m/s
Explanation:
e = Charge = C
V = Voltage =
c = Speed of light = m/s
Momentum is given by
The unit of MeV/c in SI fundamental units is kg m/s
Based on the information given, it can be inferred that the favor doesn't fall within the AAMA guidelines of her responsibilities.
From the information given, it should be noted that the guidelines of CMA as stipulated under the American Association of Medical Assistant prohibits the CMA from interpreting the medical data of the patient. Therefore, the favor that was asked by Dr. Hsu of Kayla is simply against the guidelines.
Even though the favor that was asked by Dr. Hsu was prohibited by AAMA, it should be noted that the final part of the favor about faxing the report to the internist would fall within AAMA guidelines.
In conclusion, the best way that Kayla can respond to Dr. Hsu is to decline doing the favor.
Read related link on:
Lifting a mass to a height, you give it gravitational potential energy of
(mass) x (gravity) x (height) joules.
To give it that much energy, that's how much work you do on it.
If 2,000 kg gets lifted to 1.25 meters off the ground, its potential energy is
(2,000) x (9.8) x (1.25) = 24,500 joules.
If you do it in 1 hour (3,600 seconds), then the average power is
(24,500 joules) / (3,600 seconds) = 6.8 watts.
None of these figures depends on whether the load gets lifted all at once,
or one shovel at a time, or one flake at a time.
But this certainly is NOT all the work you do. When you get a shovelful
of snow 1.25 meters off the ground, you don't drop it and walk away, and
it doesn't just float there. You typically toss it, away from where it was laying
and over onto a pile in a place where you don't care if there's a pile of snow
there. In order to toss it, you give it some kinetic energy, so that it'll continue
to sail over to the pile when it leaves the shovel. All of that kinetic energy
must also come from work that you do ... nobody else is going to take it
from you and toss it onto the pile.
Choices A, B, and D are false statements.
I think choice-C is trying to say the right thing, but it
might have gotten copied incorrectly.
Electric fields and electric forces both increase as the distance
decreases, and decrease as the distance increases.
An intersystem crossing (ISC) is a non-radiative process that involves the transition between two electronic states with different spin multiplicity. That is, when an electron is excited in a molecule in a basal singlet state (either by absorption or radiation) into a state of greater energy, an excited singlet or triplet state can be obtained.
Therefore, ISC is understood as an a non radio active transition between states with different spin multiplicity.
Correct answer is C: a radiative transition between states with the same spin.