<u>The possible formulas for impulse are as follows:</u>
J = FΔt
J = mΔv
J = Δp
Answer: Option A, E and F
<u>Explanation:</u>
The quantity which explains the consequences of a overall force acting on an object (moving force) is known as impulse. It is symbolised as J. When the average overall force acting on an object than such products are formed and in given duration than the start fraction force over change in time end fraction J = FΔt.
The impulse-momentum theorem explains that the variation in momentum of an object is same as the impulse applied to it: J = Δp J = mΔv if mass is constant J = m dv + v dm if mass changes. Logically, the impulse-momentum theorem is equivalent to Newton second laws of motion which is also called as force law.
I would say that the answer is A.
Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Answer:
I = 0.44 A
Explanation:
The magnetic force on a conductor is given by the expression
F = I L x B
Where bold letters indicate vectors, I is the current, L is the vector in the direction of the current, and B is the magnetic field
Since the force is maximum, the wire must be perpendicular to the magnetic field, therefore
F = I L B sin 90
I = F / L B
Let's calculate
I = 1.2 / 1.5 1.8
I = 0.44 A