The <em>estimated</em> displacement of the center of mass of the olive is
.
<h3>Procedure - Estimation of the displacement of the center of mass of the olive</h3>
In this question we should apply the definition of center of mass and difference between the coordinates for <em>dynamic</em> (
) and <em>static</em> conditions (
) to estimate the displacement of the center of mass of the olive (
):
(1)
Where:
- x-Coordinate of the i-th element of the system, in meters.
- y-Coordinate of the i-th element of the system, in meters.
- x-Component of the net force applied on the i-th element, in newtons.
- y-Component of the net force applied on the i-th element, in newtons.
- Mass of the i-th element, in kilograms.
- Gravitational acceleration, in meters per square second.
If we know that
,
,
,
,
,
and
, then the displacement of the center of mass of the olive is:
<h3>Dynamic condition
![\vec{r} = \left[\frac{(0)\cdot (0.50)\cdot (9.807)+(0)\cdot (0) + (1)\cdot (1.50)\cdot (9.807) + (1)\cdot (-3)}{(0.50)\cdot (9.807) + 0 + (1.50)\cdot (9.807)+(-3)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (0)\cdot (3) + (2)\cdot (1.50)\cdot (9.807) +(2) \cdot (-2)}{(0.50)\cdot (9.807) + (3)+(1.50)\cdot (9.807)+(-2)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%2B%280%29%5Ccdot%20%280%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%28-3%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%200%20%2B%20%281.50%29%5Ccdot%20%289.807%29%2B%28-3%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%280%29%5Ccdot%20%283%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%282%29%20%5Ccdot%20%28-2%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%283%29%2B%281.50%29%5Ccdot%20%289.807%29%2B%28-2%29%7D%20%20%5Cright%5D)
![\vec r = (0,704, 1.233)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r%20%3D%20%280%2C704%2C%201.233%29%5C%2C%5Bm%5D)
</h3>
<h3>Static condition</h3><h3>
![\vec{r}_{o} = \left[\frac{(0)\cdot (0.50)\cdot (9.807) + (1)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807) + (1.50)\cdot (9.807)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (2)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807)+(1.50)\cdot (9.807)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D_%7Bo%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281.50%29%5Ccdot%20%289.807%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%2B%281.50%29%5Ccdot%20%289.807%29%7D%20%20%5Cright%5D)
</h3><h3>
![\vec r_{o} = \left(0.75, 1.50)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7Bo%7D%20%3D%20%5Cleft%280.75%2C%201.50%29%5C%2C%5Bm%5D)
</h3><h3 /><h3>Displacement of the center of mass of the olive</h3>

![\overrightarrow{\Delta r} = (0.704-0.75, 1.233-1.50)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%280.704-0.75%2C%201.233-1.50%29%5C%2C%5Bm%5D)
![\overrightarrow{\Delta r} = (-0.046, -0.267)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%28-0.046%2C%20-0.267%29%5C%2C%5Bm%5D)
The <em>estimated</em> displacement of the center of mass of the olive is
. 
To learn more on center of mass, we kindly invite to check this verified question: brainly.com/question/8662931
Answer:
Even though many super-tiny atomic particles exist, you only need to remember the three basic parts of an atom: electrons, protons, and neutrons. What are electrons, protons, and neutrons? Electrons are the smallest of the three particles that make up atoms.
Hit that Brainliest!!
Answer: 0.8 m
Explanation:
In the vertical direction, the speed is zero, u = 0.
Distance covered in the vertical direction, s = 0.75 m.
The book would fall with acceleration due to gravity in the vertical direction, a = g = 9.8 m/s²
From the equation of motion,
s = u t + 0.5 a t²
Substituting the above values, we will find out the time taken for the book to hit the ground.
⇒0.75 m=0+0.5×9.8 m/s²×t²
⇒t = √0.153 = 0.39 s ≈ 0.40 s
Now, the horizontal distance covered,
d = v×t ⇒d= 2.0 m/s × 0.40 s =0.8 m
Hence, the book falls 0.8 m away from the desk.
When a satellite is moving around the Earth's orbit, two equal forces are acting on it. The centripetal and the centrifugal force. The centripetal force is the force that attracts the object toward the center of the axis of rotation. The opposite force is the centrifugal force. It draws the object away from the center. When these forces are equal, the satellite uniformly rotates along the orbit.
Centripetal force = Centrifugal force
Mass of satellite * centripetal acceleration = Mass of satellite * centrifugal acceleration
Centripetal acceleration = Centrifugal acceleration

ω^2r
where

= mass of earth
G = gravitational constant = 6.6742 x 10-11<span> m</span>3<span> s</span>-2<span> kg</span><span>-1
</span>

= radius of earth
ω = angular velocity
<span>r = radius of orbit
To convert to angular velocity:
</span>Tangential velocity = rω
ω = 5000/r
Then,

r = 2557110.465 m
Therefore, the distance of the centers of the earth and the satellite is
2.6 x 10^6 m.
<span>
</span>
Answer:
Force has a direct relationship to mass and acceleration. Newton's Second Law, force equals mass times acceleration (F=MA), illustrates their general relationship in an equation.
Explanation:
Relationships to remember:
- <u>Force</u> and <u>acceleration</u> have a direct relationship, meaning if force increases, acceleration will also increase and vice versa
(Ex: The harder you push a box, the faster it will move)
- <u>Mass</u> and <u>acceleration</u> have an inverse relationship, meaning if mass increases, acceleration will <em>decrease</em> and vice versa
(Ex: If you add more furniture in the back of a moving company truck, the truck will move slower than it did before the furniture was added)
- <u>Force</u> and <u>mass</u> have a direct relationship, meaning if mass increases, force will also increase
(Ex: You will need to exert less force to lift a 5-pound weight than a 10-pound weight)
And of course, Newton's Second Law, F=MA sums all of this up in 3 letters and a symbol! If you have any more questions about this problem, please comment on my answer :)