Answer:
Option A. 1191.49 K
Explanation:
Data obtained from the question include:
The equation for the reaction is given below:
4HCl + O2 —> 2Cl2 + 2H2O
Enthalpy (H) = +280 KJ/mol = +280000 J/mol
Entropy (S) = +235 J/Kmol
Temperature (T) =..?
The temperature at which the reaction will be feasible can be obtained as follow:
Change in entropy (ΔS) = change in enthalphy (ΔH)/T
(ΔS) = (ΔH)/T
235 = 280000/T
Cross multiply
235 x T = 280000
Divide both side by 235
T = 280000/235
T = 1191.49 K
Therefore, the temperature at which the reaction will be feasible is 1191.49 K
Answer:
where the main questions of these assmesnt
Explanation:
Answer:
Up to 80 - 120 days.
Explanation:
The flower will probably stay six to twelve days or so.
I'm not sure what's your hypothesis going to be, but I'll give you an example.
" <em>If</em> I __________, <em>then</em> the sunflower will grow up to 80 to 120 days."
In the blank space, you can write what you're going to do to your sunflower during the experiment.
Please correct me if I'm wrong.
By use of ideal gas equation PV= nRT where n is the number of moles,P = pressure, V = volume, R= gas constant (0.08206 L. atm/ mol.k) ant T is the temperature,
to calculate the number of moles(n) =PV/RT
convert ml to L, that is 200/1000= 0.2 L
convert mmHg to atm, that is 780mm hg x 1atm/ 760 mm hg= 1.026 atm
convert temperature to kelvin, that is 135 +273= 408 k
n is therefore= (0.2 x 1.026)/ ( 0.08206 x 408)= 6.129 x10^-3 moles
from avogadro constant 1moles = 6.02 x10^23 molecules what about 6 .129 x10^-3 moles
= ( 6.02 x10^23) x (6.129 x10^-3)/ 1mole = 3.69 x10^21 molecules
Answer:
Vanadium(V) oxide is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide,
Explanation:
then it is answer D