-- First, we have to decide how to handle the two resistors.
The effective resistance of resistors in series is the sum
of their individual resistances. That is, they act like a single
resistor, whose resistance is the sum of all of them.
So in this question, the 4.0 ohms and the 7.5 ohms act like a
single resistor of 11.5 ohms.
-- The current in the circuit is
(the supply voltage) / (the total resistance)
= (9.0 volts) / (11.5 ohms)
= 0.783... Ampere (rounded)
The reaction time of Boris is t(r), so before that, Boris will not have jumped. Thus, H(b)(t) = 0
The vertical displacement will simply be
D(t) = H(a)(t)
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
The magnitude of change in momentum is (2mv).
Explanation:
The momentum of an object is given by the product of mass and velocity with which it is moving.
Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.
Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :
p = final momentum - initial momentum
So, the magnitude of change in momentum is (2mv).