Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
Deposition:
- when a gas changes directly to a solid
- latent heat is released
- physical change, NOT a chemical change
The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
The given parameters;
- height of the waterfall, h = 0.432 m
- distance of the Salmon from the waterfall, s = 3.17 m
- angle of projection of the Salmon, = 30.8º
The time of motion to fall from 0.432 m is calculated as;

The minimum velocity of the Salmon jumping at the given angle is calculated as;

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
Learn more here: brainly.com/question/20064545
The second one since you’re changing the soil up by adding different fertilisers. This will be you’re independent variable. And you’re dependent variable is your result = the plant height .
Hope this helps :)