Answer:
λ^3 = 4.37
Explanation:
first let us to calculate the average density of the alloy
for simplicity of calculation assume a 100g alloy
80g --> Ag
20g --> Pd
ρ_avg= 100/(20/ρ_Pd+80/ρ_avg)
= 100*10^-3/(20/11.9*10^6+80/10.44*10^6)
= 10744.62 kg/m^3
now Ag forms FCC and Pd is the impurity in one unit cell there is 4 atoms of Ag since Pd is the impurity we can not how many atom of Pd in one unit cell let us calculate
total no of unit cell in 100g of allow = 80 g/4*107.87*1.66*10^-27
= 1.12*10^23 unit cells
mass of Pd in 1 unit cell = 20/1.12*10^23
Now,
ρ_avg= mass of unit cell/volume of unit cell
ρ_avg= (4*107.87*1.66*10^-27+20/1.12*10^23)/λ^3
λ^3 = 4.37
<h3>What is a Critical Load?</h3>
Critical load Fcr or buckling load is the value of load that causes the phenomenon of change from stable to unstable equilibrium state.
With that beign said, first it is neessary to calculate the moment of inercia about the x-axis:

Then it is necessary to calculate the moment of inercia about the y-axis:

Comparing both moments of inercia it is possible to assume that the minimun moment of inercia is the y-axis, so the minimun moment of inercia is 2662in.
And so, it is possible to calculate the critical load:

See more about critical load at: brainly.com/question/22020642
#SPJ1
Answer: hello your question lacks the required diagram attached below is the diagram
answer : 29528.1 N/m^2
Explanation:
Given data :
dimensions of tank :
Length = 5-m
Width = 4-m
Depth = 2.5-m
acceleration of tank = 2m/s^2
<u>Determine the maximum gage pressure in the tank</u>
Pa ( pressure at point A ) = s*g*h1
= 10^3 * 9.81 * 3.01
= 29528.1 N/m^2
attached below is the remaining part of the solution