1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
6

calculate force and moment reactions at bolted base O of overhead traffic signal assembly. each traffic signal has a mass 36kg,

while the masses of member OC and AC are 50Kg and 55kg, respectively. The mass center of mmber AC at G.​
Engineering
1 answer:
Igoryamba3 years ago
7 0

Answer:

The free body diagram of the system is, 558 368 368 508 O ?? O, Consider the equilibrium of horizontal forces. F

Explanation:

I hope this helps you but I think and hope this is the right answer sorry if it’s wrong.

You might be interested in
How can we love our country? Not by words but by deeds. - Jose P. Laurel
Vadim26 [7]

Answer:

1. You have the courage to help without expecting a reward.

2. Because actions are more eloquent than words. Actions are far more valuable and counted than  words, and that's how she inspired me.

3. Doing simple things that can make someone grateful and happy  without knowing that someone is inspired and motivated by your good deeds, and also doing some interesting things By.

Explanation:

6 0
3 years ago
Water at a pressure of 3 bars enters a short horizontal convergent channel at 3.5 m/s. The upstream and downstream diameters of
earnstyle [38]

Answer:

The pressure reduces to 2.588 bars.

Explanation:

According to Bernoulli's theorem for ideal flow we have

\frac{P}{\gamma _{w}}+\frac{V^{2}}{2g}+z=constant

Since the losses are neglected thus applying this theorm between upper and lower porion we have

\frac{P_{u}}{\gamma _{w}}+\frac{V-{u}^{2}}{2g}+z_{u}=\frac{P_{L}}{\gamma _{w}}+\frac{V{L}^{2}}{2g}+z_{L}

Now by continuity equation we have

A_{u}v_{u}=A_{L}v_{L}\\\\\therefore v_{L}=\frac{A_{u}}{A_{L}}\times v_{u}\\\\v_{L}=\frac{d^{2}_{u}}{d^{2}_{L}}\times v_{u}\\\\\therefore v_{L}=\frac{2500}{900}\times 3.5\\\\\therefore v_{L}=9.72m/s

Applying the values in the Bernoulli's equation we get

\frac{P_{L}}{\gamma _{w}}=\frac{300000}{\gamma _{w}}+\frac{3.5^{2}}{2g}-\frac{9.72^{2}}{2g}(\because z_{L}=z_{u})\\\\\frac{P_{L}}{\gamma _{w}}=26.38m\\\\\therefore P_{L}=258885.8Pa\\\\\therefore P_{L}=2.588bars

6 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
Transcript
posledela

Answer:

O is truse is the best answer hhahahha

Explanation:

8 0
3 years ago
For some transformation having kinetics that obey the Avrami equation (Equation 10.17), the parameter n is known to have a value
OleMash [197]

Answer:

t = 25.10 sec

Explanation:

we know that Avrami equation

Y = 1 - e^{-kt^n}

here Y is percentage of completion  of reaction = 50%

t  is duration of reaction = 146 sec

so,

0.50 = 1 - e^{-k^146^2.1}

0.50 = e^{-k306.6}

taking natural log on both side

ln(0.5) = -k(306.6)

k = 2.26\times 10^{-3}

for 86 % completion

0.86 = 1 - e^{-2.26\times 10^{-3} \times t^{2.1}}

e^{-2.26\times 10^{-3} \times t^{2.1}} = 0.14

-2.26\times 10^{-3} \times t^{2.1} = ln(0.14)

t^{2.1} = 869.96

t = 25.10 sec

5 0
3 years ago
Other questions:
  • Where do I buy a 1997 MK4 Toyota Supra twin turbo manual for cheap
    11·1 answer
  • An atomic force that can attract or repel ferrous substances is<br> known as:
    14·1 answer
  • The outer surface of a spacecraft in space has an emissivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar rad
    12·1 answer
  • Multiple Choice
    11·1 answer
  • Consider the gas carburizing of a gear of 1018 steel (0.18 wt %) at 927°C (1700°F). Calculate the time necessary to increase the
    12·1 answer
  • B) Calculate the FS against uplift and calculate effoctive stress at the base level for water
    11·1 answer
  • What would happen if the brake pedal was released while the bleed screw was open during brake bleeding?
    7·1 answer
  • PROBLEM IN PICTURE HELP ME DEAR GODDDDDD UGHHH NONONO I HAVE 2 MINUTES TO FINISH THIS ❕❗️❕❗️❗️❕❕❕❕❗️❕❕❗️❕❗️❗️❗️❕‼️‼️‼️‼️❗️‼️❗️
    11·2 answers
  • Deviations from the engineering drawing cannot be made without the approval of the
    15·2 answers
  • The side area of the door shell that is concealed when the door is closed is called the:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!