(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Where is the data for this question? what is the purpose ?
Answer:
approximately 5.8 seconds
Explanation:
if you where to time how fast a rock would fall 12 meters it would approximately be 5.8 seconds
Answer:
A large piece of charcoal on a grill in the sunlight (if it's burning) will consist of the following types of energy:
- Chemical
- Heat and
- Light
Explanation:
Charcoal is basically carbon which is produced when wood is heated strongly in the absence of oxygen. From a chemistry point of view, charcoal contains combustible carbon whose chemical formula is C. Sometimes,
which is water may be found in it but in very small units.
All matter contains Heat energy. Charcoal is not an exception. As the charcoal burns, the heat energy is produced along with Light energy.
Light comes in many forms such as Infrared rays, Xrays, Visible Spectrum light, etc.
The glow which the coal gives off fall under the visible spectrum of light.
Cheers