(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
During the daytime, I have mostly line symmetry.
During the night, I often have almost spherical symmetry.
Answer:
The outline of the energy transfer are;
a) Kinetic energy → Clockwork spring → Potential energy
b) Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Please find attached the drawings of the energy transfer created with MS Visio
Explanation:
The energy transfer diagrams are diagrams that can be used to indicate the part of a system where energy is stored and the form and location to which the energy is transferred
a) The energy transfer diagram for the winding up a clockwork car is given as follows;
Mechanical kinetic energy is used to wind up (turn) the clockwork car such that the kinetic energy is transformed into potential energy and stored in the wound up clockwork as follows;
Kinetic energy → Clockwork spring → Potential energy
b) Letting a wound up clockwork car run results in the conversion of mechanical potential energy into kinetic (energy due tom motion) energy as follows;
Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) The energy stored in the battery of a battery powered car is chemical potential energy. When the battery powered car runs, the chemical potential energy produces an electromotive force which is converted into kinetic energy as electric current flows from the batteries
Therefore, we have;
Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Answer:
2442.5 Nm
Explanation:
Tension, T = 8.57 x 10^2 N
length of rope, l = 8.17 m
y = 0.524 m
h = 2.99 m
According to diagram
Sin θ = (2.99 - 0.524) / 8.17
Sin θ = 0.3018
θ = 17.6°
So, torque about the base of the tree is
Torque = T x Cos θ x 2.99
Torque = 8.57 x 100 x Cos 17.6° x 2.99
Torque = 2442.5 Nm
thus, the torque is 2442.5 Nm.
These type of commercials lead to little girls, teenagers, and women in general to feel bad about what they look like themselves and have a negative self image. extra anxiety to fit the role of the ultra thin, perfect woman<span> <span>Can lead to individuals engaging in anorexia, bulimia and over-exertion at the gym in order to attain the “perfectly-sculpted” body:
</span></span>
http://objectificationofads.weebly.com/effects-on-women.html