1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ololo11 [35]
3 years ago
12

Janessa got through high school easily because she could remember what her teachers said in class and their tests never covered

anything else. but in college she is struggling with how to study more complex material, how to prepare for exams that demand that she apply what she is learning, and how to reconcile the apparent conflicts between what she learns in one course and what she learns in another. janessa's concerns fall into which domain?
Physics
1 answer:
VMariaS [17]3 years ago
8 0
<span>CorrectThe direction of the electric field stays the same regardless of the sign of the charges that are free to move in theconductor.Mathematically, you can see that this must be true since the expression you derived for the electric field isindependent of .Physically, this is because the force due to the magnetic field changes sign as well and causes positive charges tomove in the direction (as opposed to pushing negative charges in the direction). Therefore the result isalways the same: positive charges on the side and negative charges on the side. Because the electric fieldgoes from positive to negative charges will always point in the direction (given the original directions of</span>
You might be interested in
Traumatic brain injury such as a concussion results when the head undergoes a very large acceleration. Generally an acceleration
eimsori [14]

The complete text of the problem is:

<em>"Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.43 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.1 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. "</em>

<em />

<u>Solution:</u>

1) Acceleration: -2336 m/s^2 on the hardwood floor, -382 m/s^2 on the carpeted floor

First of all, we need to calculate the speed of the child just before he hits the floor. This can be done by using the equation

v^2 - u^2 = 2ad

where

v is the final speed

u = 0 is the initial speed (the child starts from rest)

a = g = 9.8 m/s^2 is the acceleration of gravity

d = 0.43 m is the distance covered by the child as he falls from the bed

Solving for v,

v=\sqrt{2ad}=\sqrt{2(9.8)(0.43)}=2.9 m/s

Now we can analyze the moment of the collision. The child hits the floor with an initial speed of v = 2.9 m/s, and he comes to a stop, so the final speed is v' = 0. If the floor is hardwood, the stopping distance is

d = 1.8 mm = 0.0018 m

So we can find the acceleration by using again the equation

v'^2 - v^2 = 2ad

Solving for a,

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.0018)}=-2336 m/s^2

For the carpeted floor instead,

d=1.1 cm = 0.011 m

therefore the acceleration is

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.011)}=-382 m/s^2

2) Duration: 1.24 ms for the hardwood floor, 7.59 ms for the carpeted floor

We can find the duration of the collision in both cases by using the equation of the acceleration

a=\frac{v'-v}{t}

where

v' = 0

v = 2.9 m/s

For the hardwood floor,

a=-2336 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-2336}=0.00124 s = 1.24 ms

For the carpeted floor,

a=-382 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-382}=0.00759 s = 7.59 ms

We can now comment the results using the initial statement of the problem:

"Generally an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1,000 m/s2 lasting for at least 1ms will cause injury"

Therefore, the fall on the hardwood floor can result in injury (since the acceleration is greater than 1,000 m/s2 for more than 1 ms), while the fall on the carpeted floor is not dangerous (much less than 1000 m/s^2).

8 0
3 years ago
Suppose the coefficient of static friction between a quarter and the back wall of a rocket car is 0.330. At what minimum rate wo
Helga [31]

Answer:3.23 m/s^2

Explanation:

Given

\mu_s =0.330

Frictional Force is balanced by force due to car acceleration

Frictional force F_s

F_s=ma_{min}

\mu_sN=ma_{min}

\mu_s\cdot mg=ma_{min}

a_{min}=\mu_s \cdot g=0.330\times 9.8=3.23 m/s^2

6 0
3 years ago
A blue train of mass 50 kg moves at 4 m/s toward a green train of 30 kg initially at rest. The trains collide. After the collisi
ra1l [238]

Explanation:

Momentum = mass × speed

p = (30 kg) (3 m/s)

p = 90 kg m/s

7 0
3 years ago
An empty 230 kg elevator accelerates upward
elena-s [515]

Answer:

7.2 as used in the equation

3 0
3 years ago
( Can someone help? )
Murrr4er [49]

Answer:

Answer would be 0.33

Explanation:

Calculations

8 0
3 years ago
Read 2 more answers
Other questions:
  • A 6 V battery is connected to a 24 ohm resistor to create a circuit. The 6 V battery is then replaced with a 12 V battery. How d
    10·1 answer
  • A projectile is thrown at an angle 30° from horizontal. Which statement about its vertical component of velocity is true?
    11·2 answers
  • Social learning theory indicates that learning occurs from _____.
    10·1 answer
  • A 1.35 kg block at rest on a tabletop is attached to a horizontal spring having constant 19.8 n/m. the spring is initially unstr
    15·1 answer
  • What is the acceleration of a 1.5 kg football thrown with a force of 13.00 N to the
    13·1 answer
  • A night lamp uses a 30 W bulb. If it is left on continuously for 8 hours, how much energy will it use?
    15·2 answers
  • What is the diffference between distance and displacement
    14·1 answer
  • Mr. MacDougall got his vehicle stuck in the snow. Being the nice student that you are, you stop to help Mr. MacDougall out of th
    6·1 answer
  • Two identical cars are parked in the sun on a warm day. One car is black and the other is white. Both cars are parked for three
    11·2 answers
  • If the velocity of a body varied uniformly from 10 m s-1 to 25 m s-1
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!