1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
3 years ago
14

ILL GIVE BRAINLIEST.

Physics
1 answer:
notka56 [123]3 years ago
8 0
55 m/s is the answer if nothing has changed it will come back the same speed it was thrown up. Have an amazing day!
You might be interested in
9. A sailor pulls a boat along a dock using a rope at an angle of 60.0° with the
aleksklad [387]

Answer: (1) 3.83x10^3 J

Explanation:

(1) Fx=(255N)cos60°

   dx=30.0m

   w=Fx dx =(255)(cos60°)(30.0m)

6 0
3 years ago
Explain Alfred wegener's hypothesis
grandymaker [24]
He proposed the theory of Continental Drift. He believed that all of the continents were once joined together in a super continent he called Pangea (not sure if that's spelled right I studied this awhile ago). He proved this by showing similarities in fossils in completely different continents and showing how well the continents could fit together.
8 0
3 years ago
Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
spin [16.1K]

Answer:

The true weight of the aluminium is m_{alu} = 4.5021 kg

Explanation:

Given data

m_{app} = 4.5 kg

\rho_{air} = 1.29 \frac{kg}{m^{3} }

\rho_{al} = 2.7× 10^{3} \frac{kg}{m^{3} }

The true mass of the aluminium is given by

m_{alu} = \frac{\rho_{alu}m_{app}}{\rho_{alu} -\rho_{air} }

Put all the values in above equation we get

m_{alu} = \frac{(2700)(4.5)}{2700-1.29}

m_{alu} = 4.5021 kg

Therefore the true weight of the aluminium is m_{alu} = 4.5021 kg

6 0
3 years ago
Most cars have a coolant reservoir to catch radiator fluid that may overflow when the engine is hot. A radiator is made of coppe
alexandr402 [8]

Answer:

0.699 L of the fluid will overflow

Explanation:

We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C

and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C

Substituting these values into the equation, we have

ΔV = V₀β(T₂ - T₁)

= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)

= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L

= 0.698832 L

≅ 0.699 L = 0.7 L to the nearest tenth litre

So, 0.699 L of the fluid will overflow

6 0
3 years ago
A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s a
anastassius [24]

a) y(max)  = 337.76 m

b) t₁ = 5.30 s  the time for y maximum

c)t₂ =  13.60 s  time for y = 0 time when the fly finish

d) vₓ = 30 m/s        vy = - 81.32 m/s

e)x = 408 m

Equations for projectile motion:

v₀ₓ = v₀ * cosα          v₀ₓ = 60*(1/2)     v₀ₓ = 30 m/s   ( constant )

v₀y = v₀ * sinα           v₀y = 60*(√3/2)     v₀y = 30*√3  m/s

a) Maximum height:

The following equation describes the motion in y coordinates

y  =  y₀ + v₀y*t - (1/2)*g*t²      (1)

To find h(max), we need to calculate t₁ ( time for h maximum)

we take derivative on both sides of the equation

dy/dt  = v₀y  - g*t

dy/dt  = 0           v₀y  - g*t₁  = 0    t₁ = v₀y/g

v₀y = 60*sin60°  = 60*√3/2  = 30*√3

g = 9.8 m/s²

t₁ = 5.30 s  the time for y maximum

And y maximum is obtained from the substitution of t₁  in equation (1)

y (max) = 200 + 30*√3 * (5.30)  - (1/2)*9.8*(5.3)²

y (max) = 200 + 275.40 - 137.64

y(max)  = 337.76 m

Total time of flying (t₂)  is when coordinate y = 0

y = 0 = y₀  + v₀y*t₂ - (1/2)* g*t₂²

0 = 200 + 30*√3*t₂  - 4.9*t₂²            4.9 t₂² - 51.96*t₂ - 200 = 0

The above equation is a second-degree equation, solving for  t₂

t =  [51.96 ±√ (51.96)² + 4*4.9*200]/9.8

t =  [51.96 ±√2700 + 3920]/9.8

t =  [51.96 ± 81.36]/9.8

t = 51.96 - 81.36)/9.8         we dismiss this solution ( negative time)

t₂ =  13.60 s  time for y = 0 time when the fly finish

The components of the velocity just before striking the ground are:

vₓ = v₀ *cos60°       vₓ = 30 m/s  as we said before v₀ₓ is constant

vy = v₀y - g *t        vy = 30*√3  - 9.8 * (13.60)

vy = 51.96 - 133.28         vy = - 81.32 m/s

The sign minus means that vy  change direction

Finally the horizontal distance is:

x = vₓ * t

x = 30 * 13.60  m

x = 408 m

5 0
3 years ago
Other questions:
  • Greg is in a car at the top of a roller-coaster ride. The distance, d, of the car from the ground as the car descends is determi
    15·1 answer
  • Calculate the kinetic energy of the following object.
    15·1 answer
  • A hole is to be drilled in the plate at A. The diameters of the bits available to drill the hole range from 12 to 24 mm in 3-mm.
    12·1 answer
  • Ciara is swinging a 0.015 kg ball tied to a string around her head in a flat, horizontal circle. The radius of the circle is 0.7
    7·2 answers
  • Determine the potential difference between two charged parallel plates that are 0.10 cm apart and have an electric field strengt
    11·1 answer
  • Rob measures the solubility of three different salts in water at 22°C.
    6·2 answers
  • An inclined plane is used to lift a box into a moving truck. The ramp is 6m long and 1.5m
    9·1 answer
  • Which statement about an atom is correct?(1 point)
    5·2 answers
  • Velocity ratio of a machine is 4 what does it mean​
    12·1 answer
  • Can work output exceed work input?<br> Yes<br> No
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!