Before we answer this question, let us first understand
what alternate hypothesis is.
The alternative hypothesis is the hypothesis which is
used in the hypothesis testing and this is opposite to the null hypothesis.
This is the test hypothesis which is usually taken to be that the observations
are the result of a real effect in an experiment.
In this case since what we want to set up is the
statistical test to see if the waves are dying down, then this means we are
trying to determine if the wave height are decreasing, so lesser than 16.4
feet. Therefore:
The alternative hypothesis would state (ANSWER)
Ha: μ less than 16.4 feet and
P-value area is on the left of the mean.
While the null hypothesis is the opposite and would state
H0: mu equals 16.4 feet
Answer:
4 Ohms
Explanation
(This is seriously not as hard as it looks :)
You only need two types of calculations:
- replace two resistances, say, R1 and R2, connected in a series by a single one R. In this case the new R is a sum of the two:

- replace two resistances that are connected in parallel. In that case:

I am attaching a drawing showing the process of stepwise replacement of two resistances at a time (am using rectangles to represent a resistance). The left-most image shows the starting point, just a little bit "warped" to see it better. The two resistances (6 Ohm next to each other) are in parallel and are replaced by a single resistance (3 Ohm, see formula above) in the top middle image. Next, the two resistances (9 and 3 Ohm) are nicely in series, so they can be replaced by their sum, which is what happened going to the top right image. Finally we have two resistances in parallel and they can be replaced by a single, final, resistance as shown in the bottom right image. That (4 Ohms) is the <em>equivalent resistance</em> of the original circuit.
Using these two transformations you will be able to solve step by step any problem like this, no matter how complex.
Answer:
175 m
Explanation:
The average velocity for constant acceleration is the average of the beginning and ending velocities. That is (0+39)/2=19.5 m/s. If the bicyclist rides for 9 seconds, the distance traveled is ...
(9 s)(19.5 m/s) = 175.5 m
She would travel 175.5 meters in that time.
Answer: -0.84 rad/sec (clockwise)
Explanation:
Assuming no external torques act on the system (man + turntable), total angular momentum must be conserved:
L1 = L2
L1 = It ω + mm. v . r = 81.0 kg . m2 .21 rad/s – 56.0 kg. 3.1m/s . 3.1 m
L1 = -521.15 kg.m2/sec (1)
(Considering to the man as a particle that is moving opposite to the rotation of the turntable, so the sign is negative).
Once at rest, the runner is only a point mass with a given rotational inertia respect from the axis of rotation, that can be expressed as follows:
Im = m. r2 = 56.0 kg. (3.1m)2 = 538.16 kg.m2
The total angular momentum, once the runner has come to an stop, can be written as follows:
L2= (It + Im) ωf = -521.15 kg.m2/sec
L2= (81.0 kg.m2 + 538.16 kg.m2) ωf = -521.15 kg.m2/sec
Solving for ωf, we get:
ωf = -0.84 rad/sec (clockwise)
Hints:
The Earth's energy does not come from eating a balanced diet,
or from ninja turtles, or from getting sleep and exercise.
There are no hamsters running on a treadmill inside the Earth.
God didn't wind up a big spring to operate the Earth.
The Sun provides, and has always provided, almost all of the energy
used on Earth. It was the energy that got stored in dead dinosaurs
to make gas and oil, and it's the energy that makes plants grow, and
gets stored in them so we can get the energy by eating the plants.