Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)(
-
).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)(
-
)
= 0.2(
)
f =
= 150
For air (nair = 1):
= (1.5 - 1)(
-
)
f =
= 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.
Answer:
agree with student 2, disagree with student 1
Explanation:
If you want to know if the wavelength of light was shifted you have to know the original wavelengths
Since we know the absorption spectrum for elements like hydrogen, we can look for these absorption lines in the star's spectra and figure out what direction these lines are shifted and tell if the star is moving away or towards us
The color of the star refers to the temperature of the star's surface which is not related to the doppler shift of the star
<span> Second-level consumer </span>