Answer:
Acceleration of gravity=
Explanation:
Newton's Second Law-acceleration is proportional to the net force acting on an object.
All objects usually free fall at the same acceleration of
-this regardless of their mass. This acceleration is known as acceleration of gravity.
Answer:
The block will not move.
Explanation:
We'll begin by calculating the frictional force. This can be obtained as follow:
Coefficient of friction (µ) = 0.6
Mass of block (m) = 3 Kg
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (R) = mg = 3 × 10 = 30 N
Frictional force (Fբ) =?
Fբ = µR
Fբ = 0.6 × 30
Fբ = 18 N
From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.
Seismic wave is the answer
<span>160 Joules
For this problem, we can ignore the vertical component of the applied force and focus on only the horizontal component of 80 N and since work is defined as force over distance, let's multiply the force by the distance:
80 N * 2.0 m = 160 Nm = 160 kg*m^2/s^2 = 160 Joules.
So the cart has a final kinetic energy of 160 Joules.</span>
Answer:
12.267 seconds approximately.
Explanation:
The units can be simplified into m/s, in which case you would have 61000/3600. Simplify that to 16 and 17/18. This is your meters per second, so multiply that by .724 to get the answer.