Answer:
Explanation:
radius of aorta = 1.5 cm
cross sectional area = π r²
= 3.14 x 1.5²
= 7.065 cm²
volume of blood flowing out per second out of heart
= a x v , a is cross sectional area , v is velocity of flow
= 7.065 x 11.2
= 79.128 cm³
heart beat per second = 67 / 60
= 1.116666
If V be the volume of heart
1.116666 V = 79.128
V = 70.86 cm³.
(a) 
The moment of inertia of a uniform-density disk is given by

where
M is the mass of the disk
R is its radius
In this problem,
M = 16 kg is the mass of the disk
R = 0.19 m is the radius
Substituting into the equation, we find

(b) 142.5 J
The rotational kinetic energy of the disk is given by

where
I is the moment of inertia
is the angular velocity
We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

And so, the rotational kinetic energy is

(c) 
The rotational angular momentum of the disk is given by

where
I is the moment of inertia
is the angular velocity
Substituting the values found in the previous parts of the problem, we find
