<span>The momentum before the collision is equal to the momentum after the collision</span>
a. The force applied would be equal to the frictional
force.
F = us Fn
where, F = applied force = 35 N, us = coeff of static
friction, Fn = normal force = weight
35 N = us * (6 kg * 9.81 m/s^2)
us = 0.595
b. The force applied would now be the sum of the
frictional force and force due to acceleration
F = uk Fn + m a
where, uk = coeff of kinetic friction
35 N = uk * (6 kg * 9.81 m/s^2) + (6kg * 0.60 m/s^2)
uk = 0.533
Archimedes' principle states that a body immersed in a fluid is subjected to an upwards force equal to the weight of the displaced fluid. This is a first condition of equilibrium. We consider that the above force, called force of buoyancy, is located in the centre of the submerged hull that we call centre of buoyancy.
Answer:
a)0.024
b)0.148
Explanation:
Let 's represent the set of deer ticks Carrying Lyme disease with L and the set of deer ticks carrying Human Granulocytic Ehrlichiosis with H
Given:
P(L) = 0.16
P(H) = 0.10
P(L n H) = 0.1 ·P( L u H )
Hence, P( L u H) = 10 ·P( L nH)
(a)
Hence. using the equation. P(L U H) = P(L) + P(H) - P(L n H)
Hence, 10 · P(L n H ) = 0.16 + 0.1 - P(L n H )
Hence, 11 · P(L n H) = 0.16 + 0.1 = 0.26
Hence, P(L n H) =
0.26/11=0.024
(b)
We know that condition probability P(H ║ L) = p(L n H)/P(L)
hence, P(H ║ L) =(0.26/11)/0.16 =0.148