The best conclusion that can be drawn is that D) A current does not flow in the wire
Answer: final Velocity v = 10.2m/s
Explanation:
Final speed v(t) is given as
v(t) = u + at .......1
Where; u = the initial speed
a = acceleration
t = time taken
The total distance travelled d is given as
d = ut + 1/2(at^2)
Given
d = 5.0m
u = 2.0m
a = g = 10m/s2 (acceleration due to gravity)
Substituting into the equation above we have
5 = 2t + 5t^2
5t^2 +2t -5 = 0
Applying the quadratic formula. We have;
t = 0.82s & t = -1.22s
t cannot be negative
t = 0.82s
From equation 1 above
v = 2.0m/s + 10(0.82)m/s
v = 10.2m/s
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.
Answer:
1. Distance travelled = 12 km.
2. Displacement = 8.6 km
Explanation:
From the question given above, the following data were obtained:
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance =?
Displacement =?
1. Determination of the distance travelled.
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance (dₜ) =?
dₜ = d₁ + d₂
dₜ = 7 + 5
dₜ = 12 km
2. Determination of the displacement.
In the attached photo, R is the displacement.
We can obtain the value of R by using the pythagoras theory as illustrated below:
R² = 7² + 5²
R² = 49 + 25
R² = 74
Take the square root of both side
R = √74
R = 8.6 km