Answer:
SrSO4
Explanation:
According to solubility rules, we know that the sulphates of the elements of group two are insoluble in water. The solubility rules describe what chemical species are soluble in water and what species are not soluble in water.
Generally, all chlorides are soluble in water with exception of chlorides such as silver chloride. The chlorides of group one elements are usually highly soluble in water.
Since SrSO4 is a sulphate of a group two element (strontium) it will be the insoluble solid product of the double displacement reaction described in the question.
Mass of Ni = 0.015 mol Ni × (58.693 g Ni/1 mol Ni) = 0.88 g Ni
Answer:

Explanation:
Hello!
In this case, since calcium's oxidation state when forming ionic bonds is +2 and sulfur's oxidation state when bonding those bonds is -2, for the required formula we write:

Now, since they have the same charge number, we infer the ionic compound formed when they bond is calcium sulfide:

Best regards!
Answer:
Final volumeof the gas = 2.84 L
Explanation:
The formular to be used here is the general gas equation. the formular is being used because it gives the relationship between the three gas parameters (volume, temperature and pressure) mentioned.
The general gas equation is given as;

where;
P1 = initial pressure
V1 = initial volume
T1 = initial temperature
P2 = Final pressure
V2 = Final volume
T2 = Final temperature
From the question,
P1 = 1.00 atm
P2 = 0.85atm
T1 = 25C + 273 = 298K (Converting to kelvin)
T2 = 15C + 273 = 288K (Converting to kelvin)
V1 = 2.5L
V2 = ?
from the equation, making V2 subject of formula we have;

V2 = (1*2.5*288)/(298*0.85) = 2.84 L.