Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide
Although you have not provided the circled electron, I can help you with a wide explanation.
1) Atomic number of manganese is 25. That means that it has 25 protons and 25 electrons.
2) Those 25 electrons are distributed (electron configuration) as per the quantum rules:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵
3) The most reasonable is that you have been asked to give the possible quantum numbers for an electron in the 4s or 3d.
4) Those are 7 electrons and these are their possible sets of quantum numbers:
i) For the two electrons in 4s:
n is the main energy level so n = 4
l tells the kind of orbital, which is s, so l = 0
ml is also 0 (it can be from -l to + l, so given that l i s0, ml is 0)
ms: one is +/12 and the other is -1/2 (this is the spin number).
ii) For the 5 electrons in 3d
n = 3
l can be 0, 1, or 2
if l = 0, then ml = 0
if l = 1, then ml can be -1, 0 , or 1 (from - l to + l)
ms can be either +1/2 or - 1/2 (spin)
Answer:
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
Explanation:
Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.