1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
3 years ago
7

An object is moving in the plane according to these parametric equations:

Physics
2 answers:
morpeh [17]3 years ago
8 0

Answer:

.a vx = -3π

b.vy = 0

c.c. m = sin(4πt + π/2) / [πt + cos(4πt + π/2)]

d.m = sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f.f. t = -0.35

g.vx = π - 4πsin (4π(0.124) + π/2)

h.vmax=4π cos (4π(0.045) + π/2)

i.s(t) = [x(t)^2 + y(t)^2]^(1/2)

s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

Explanation:

x(t) = πt + cos(4πt + π/2)

differentiating te orizontal distance wit respect to time t, will give horizontal velocity

change in displacement  per change in time is velocity

vx = dx/dt = π - 4πsin (4πt + π/2)

vx = π - 4π sin (0 + π/2)

at t =0, substituting te value of t into the above

vx = π - 4π (1)

vx = -3π

b,

y(t) = sin(4πt + π/2)

differentiate wit respect to t

dy/dt=4π cos (4πt + π/2)

π/2=90

when t=0

b. vy=dy/dt = 4π cos (4πt + π/2)

vy = 0

c.  slope of te tanent line

y(t)/x(t)

c. m = sin(4πt + π/2) / [πt + cos(4πt + π/2)]

d. at t=1/6, we substitute into answer gotten in c

m = sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t  

vx = π - 4πsin (4πt + π/2) = 0

at maximum v=0

(4πt + π/2)=0.0043

t=-π/2+0.0043/(4π)

t=-0.124

vx = π - 4πsin (4π(0.124) + π/2)

h. Solve for t

vy = 4π cos (4πt + π/2) = 0

(4πt + π/2=1

t=0.57/4π

t=0.045

vmax=4π cos (4π(0.045) + π/2)

i.  resultant of te displacement

s(t) = [x(t)^2 + y(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

s'(t)=

k and l. Solve for the values of t

d [x(t)^2 + y(t)^2]^(1/2) / dt = 0

And substitute to determine the maximum and minimum speeds.

aniked [119]3 years ago
5 0
A. The horizontal velocity is 
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π

b. vy = 4π cos (4πt + π/2)
vy = 0

c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]

d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t 
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax

h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax

i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
You might be interested in
En la Tierra, una balanza muestra que tu peso es 585 N.
ra1l [238]

Answer:

a) m = 59.63 [kg]

b) Wm = 95.41 [N]

Explanation:

El peso de un cuerpo se define como el producto de la masa por la aceleración gravitacional. DE esta manera tenemos:

W = m*g

Donde:

m = masa [kg]

g = gravedad = 9.81 [m/s^2]

m = W / g

m = 585 / 9.81

m = 59.63 [kg]

Es importante aclarar que la masa se conserva independientemente de la ubicación del cuerpo en el espacio.

Por ende su masa sera la misma en la luna.

El peso en la luna se calcula como Wm y es igual a:

Wm = 59.63 * 1.6 = 95.41 [N]

5 0
3 years ago
A firework is ignited, and explodes with a flash and a loud bang as it is blown apart. The system consists of: the firework, the
butalik [34]

The complete question is:

Study the scenario. A firework is ignited, and explodes with a flash and a loud bang as it is blown apart. The system consists of: the firework, the earth, and the air. which choice best describes how energy is transformed in the system?

A) When the firework is ignited, a chemical reaction absorbs energy from the surrounding environment. the energy is in several forms including sound and light, and mechanical energy of the fragments of the firecracker that are launched through the air. Eventually all the energy released is transformed into thermal energy.

B) When the firework is ignited, a chemical reaction releases energy in several forms, including sound, light, and the mechanical energy of the fragments being launched through the air. Eventually all the energy released is transformed into mechanical energy.

C) When the firework is ignited, a chemical reaction releases energy in several forms, including sound, light, and the mechanical energy of the fragments being launched through the air. Eventually all the energy released is transformed into thermal or mechanical energy.

D) When the firework is ignited, a chemical reaction absorbs energy from the surrounding environment. The energy is taken in in several forms including sound and light, and mechanical energy of the fragments being launched through the air. Eventually all the energy is transformed into thermal energy.

Answer:

C) When the firework is ignited, a chemical reaction releases energy in several forms, including sound, light, and the mechanical energy of the fragments being launched through the air. Eventually all the energy released is transformed into thermal or mechanical energy.

Explanation:

Energy is released from the system, not absorbed.

All the sound, light and movement of the debris is as a result of energy transformation from the chemical energy.

Eventually, most of the energy are finally wasted away as heat energy.

Some of the energy is used up by the flying particles from the fireworks.

8 0
3 years ago
Consider a steel guitar string of initial length L=1.00 meter and cross-sectional area A=0.500 square millimeters. The Young's m
Reil [10]

Answer:

\Delta l=0.015m

Explanation:

We have given initial length of the steel guitar l = 1 m

Cross sectional area A=0.5mm^2=0.5\times 10^{-6}m^2

Young's modulus \gamma=2\times 10^{11}Pa

Force F = 1500 N

So stress =\frac{force}{area}=\frac{1500}{0.5\times 10^{-6}}=3000\times 10^{-6}=3\times 10^{9}Pa

We know that young's modulus =\frac{stress}{strain}

So 2\times 10^{11}=\frac{3\times 10^{9}}{strain}

strain=1.5\times 10^{-2}=0.015m

Now strain =\frac{\Delta l}{l}

0.015=\frac{\Delta l}{1}

\Delta l=0.015m

6 0
3 years ago
Read 2 more answers
You are a scientist trying to develop a technology that can be used to power wrist watches. Which type of electromagnetic wave w
Salsk061 [2.6K]
Microwave because they are powerful and available can be d answer
3 0
3 years ago
Read 2 more answers
Help please (20 pts) I think it's C
gregori [183]

Answer:

I'm not sure it is c I'm sure it is d

6 0
3 years ago
Other questions:
  • What would be the best tool to measure the amount of matter in an object?
    11·1 answer
  • Which example is a naturally occurring magnet
    9·1 answer
  • If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If i
    8·2 answers
  • Two technicians are discussing the need for the history of the vehicle. Technician A says that an accident could cause faults du
    9·1 answer
  • Why is the answer B and not E?
    8·2 answers
  • What happens to an object's mass as the object's acceleration increases but the force stays the same
    15·2 answers
  • If anyone could answer my question , please help -,- xD
    6·2 answers
  • Which has more inertia - a 2,750 gram object or a 2,500 gram object?
    11·2 answers
  • NEED HELP ASAP! TY IF YOU DO :D
    11·1 answer
  • Hi! Whoever can answer this question the best I will give the brainliest answer!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!