Answer:
Yes.
Explanation:
Reactors use uranium for nuclear fuel. The uranium is processed into small ceramic pellets and stacked together onto sealed metal tubes called fuel rods. The heat created by fission turns the water into steam.
Answer:
Explanation:
The momentum of the 25 kg mass is


If this whole momentum of the object is transferred to the 5.0 kg object then according to the law of conservation of momentum, the momentum of the 25.0 kg object must be transferred to the 5.0 kg object:



Answer:
c > √(2ab)
Explanation:
In this exercise we are asked to find the condition for c in such a way that the results have been real
The given equation is
½ a t² - c t + b = 0
we can see that this is a quadratic equation whose solution is
t = [c ±√(c² - 4 (½ a) b)] / 2
for the results to be real, the square root must be real, so the radicand must be greater than zero
c² -2a b > 0
c > √(2ab)
The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.
2. This is immediate from (2.2.7).
3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =
Answer:
s = 30330.7 m = 30.33 km
Explanation:
First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:
v = v₀√[T/273 k]
where,
v = speed of sound at given temperature = ?
v₀ = speed of sound at 0°C = 331 m/s
T = Given Temperature = 10°C + 273 = 283 k
Therefore,
v = (331 m/s)√[283 k/273 k]
v = 337 m/s
Now, we use the following formula to calculate the distance traveled by sound:
s = vt
where,
s = distance traveled = ?
t = time taken = 90 s
Therefore,
s = (337 m/s)(90 s)
<u>s = 30330.7 m = 30.33 km</u>