1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
11

. If a pendulum-driven clock gains 5.00 s/day, what fractional change in pendulum length must be made for it to keep perfect tim

e
Physics
1 answer:
inn [45]3 years ago
6 0

Answer:

The appropriate response will be "Length must be increased by 0.012%".

Explanation:

The given values is:

ΔT = 5 s/day

Now,

⇒ \frac{\Delta T}{T} =\frac{5}{24\times 60\times 60}

On multiplying both sides by  "100", we get

⇒ \frac{\Delta T}{T}\times 100 =\frac{500}{24\times 60\times 60}

⇒ \frac{\Delta T}{T}\times 100=0.005787 (%)

∵  T=2\pi\sqrt{\frac{l}{g} }

On substituting the values, we get

⇒ \frac{\Delta T}{T}% = \frac{1}{2}\times \frac{\Delta l}{l}%

On applying cross multiplication, we get

⇒ \frac{\Delta l}{l}% = 2\times \frac{\Delta T}{T}%

⇒        = 2\times 0.05787

⇒        = 0.011574

⇒        = 0.012%

You might be interested in
The coil of a generator has a radius of 0.14 m. When this coil is unwound, the wire from which it is made has a length of 10.0 m
adell [148]

Answer:

5.565 V

Explanation:

Radius of coil of generator=r=0.14 m

Length of wire=l=10 m

Magnetic field,B=0.24 T

Angular speed,\omega=34rad/s

We have to find the peak emf of the generator.

N=\frac{l}{2\pi r}=\frac{10}{2\pi\times 0.14}=11

A=\pi r^2=\pi (0.14)^2=0.062m^2

Peak(maximum) induced emf of generator=E_{max}=NBA\omega

Using the formula

E_{max}=11\times 0.24\times 0.062\times 34

E_{max}=5.565 V

3 0
3 years ago
A ball is thrown directly downward with an initial speed of 7.70 m/s, from a height of 30.2 m. After what time interval does it
KatRina [158]

Answer:

t = 1.82

Explanation:

Given

u = 7.70m/s -- initial velocity

s = 30.2m --- height

Required

Determine the time to hit the ground

This will be solved using the following motion equation.

s = ut + \frac{1}{2}gt^2

Where

g = 9,8m/s^2

So, we have:

30.2 = 7.70t + \frac{1}{2} * 9.8 * t^2

30.2 = 7.70t + 4.9 * t^2

Subtract 30.2 from both sides

30.2 -30.2  = 7.70t + 4.9 * t^2 - 30.2

0  = 7.70t + 4.9 * t^2 - 30.2

0  = 7.70t + 4.9t^2 - 30.2

7.70t + 4.9t^2 - 30.2  = 0

4.9t^2 + 7.70t - 30.2  = 0

Solve using quadratic formula:

t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}

Where

a = 4.9;\ b = 7.70;\ c = -30.2

t = \frac{-7.70\±\sqrt{7.70^2 - 4*4.9*-30.2}}{2*4.9}

t = \frac{-7.70\±\sqrt{651.21}}{9.8}

t = \frac{-7.70\±25.52}{9.8}

Split the expression

t = \frac{-7.70+25.52}{9.8} or t = \frac{-7.70-25.52}{9.8}

t = \frac{17.82}{9.8} or t = -\frac{33.22}{9.8}

Time can't be negative;  So, we have:

t = \frac{17.82}{9.8}

t = 1.82

Hence, the time to hit the ground is 1.82 seconds

7 0
3 years ago
If a resource is non renewable, it ____
Karolina [17]

it cannot be reuse and replaced for long period of time.hope it helps u

4 0
3 years ago
Need asap !
Tanya [424]

D. 51 N. The minimum applied force that will cause the television slide is 51 N.

In order to solve this problem we have to use the force of static friction equation Fs = μs*n, where μs is the coefficient of static friction, and n is the normal force m*g.

With μs = 0.35, and n = 15kg*9.8m/s² = 147 N

Fs = (0.35)(147 N)

Fs = 51.45 N

Fs ≅ 51 N

3 0
3 years ago
Read 2 more answers
To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
Nimfa-mama [501]

Complete Question

The compete question is shown on the first uploaded question

Answer:

The speed is  v  =  350 \  m/s  

Explanation:

From the question we are told that

   The  distance of separation is  d =  4.00 m  

  The distance of the listener to the center between the speakers is  I =  5.00 m

  The change in the distance of the speaker is by k  =  60 cm  =  0.6 \  m

    The frequency of both speakers is f =  700 \  Hz

Generally the distance of the listener to the first speaker is mathematically represented as

       L_1  =  \sqrt{l^2 + [\frac{d}{2} ]^2}

       L_1  =  \sqrt{5^2 + [\frac{4}{2} ]^2}

        L_1  =   5.39 \  m

Generally the distance of the listener to second speaker at its new position is  

          L_2  =  \sqrt{l^2 + [\frac{d}{2} ]^2 + k}

       L_2  =  \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}

        L_2  =   5.64  \  m  

Generally the path difference between the speakers is mathematically represented as

        pD  = L_2 - L_1  =  \frac{n  *  \lambda}{2}

Here \lambda is the wavelength which is mathematically represented as

         \lambda =  \frac{v}{f}

=>    L_2 - L_1  =  \frac{n  *  \frac{v}{f}}{2}

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

Here n is the order of the maxima with  value of  n =  1  this because we are considering two adjacent waves

=>    5.64 - 5.39   =  \frac{1  *  v}{2*700}      

=>    v  =  350 \  m/s  

7 0
3 years ago
Other questions:
  • The resistance force for this ideal pulley system is 1000 n what is the fe
    14·1 answer
  • 5. Consider two glasses, one filled with water and the other half-full, with the water in the two glasses being at the same temp
    11·1 answer
  • a ball rolls 6.0 meters as its speed changes from 15 meters per second to 10 meters per second. whaf is the average speed of the
    7·1 answer
  • Calculating Mass from Potential Energy A skier with a potential energy of 137,200 J waits on top of a ski jump that is 200 m hig
    14·2 answers
  • The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. If a rock weighs 75.0 N on earth, compu
    11·1 answer
  • A 1-kilogram object is thrown horizontally and a 2-kilogram object is dropped vertically at
    13·1 answer
  • Height of a artificial satelite​
    12·1 answer
  • Technician A states that a reading of 250 mv from the O2 indicates a rich exhaust. Technician B states that when the PCM receive
    6·1 answer
  • Calculate the tension (in N) in a vertical strand of spiderweb if a spider of mass 5.00 ✕ 10-5 kg hangs motionless on it.
    12·1 answer
  • The following equation shows the position of a particle in time t, x=at2i + btj where t is in second and x is in meter. A=2m/s2,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!