Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
Answer:
A. When it is in a magnetic field, it becomes a temporary magnet.
Explanation:
An iron bolt is attracted to a magnet because when in a magnetic field, the iron becomes a temporary magnet.
This is because the iron aligns their electrons in the magnetic fields.
- This causes that attraction between the magnet and the iron.
- Metals like iron are said to be ferromagnetic
- Unpaired electrons in iron spin in such a way that they align with the magnetic fields of the magnet.
The frequency of oscillation is 2.153 Hz
What is the frequency of spring?
Spring Frequency is the natural frequency of spring with a weight at the lower end. Spring is fixed from the upper end and the lower end is free.
For the mass-spring system in this problem,
The Frequency of spring is calculated with the equation:

Where,
f = frequency of spring
k = spring constant = 64 N/m
m = mass attached to spring = 350g = 0.350 kg
a = maximum acceleration = 5.3 m/s^2
Substituting the values in the equation,



Hence,
The frequency of oscillation is 2.153 Hz
Learn more about frequency here:
<u>brainly.com/question/13978015</u>
#SPJ4