The answer is to this question D
As momentum / time = force
so; time = 100÷15
so your answer is 6.7 !!
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
Explanation:
Let us assume that the separation of plate be equal to d and the area of plates is
. As the capacitance of capacitor is given as follows.
C = 
It is known that the dielectric strength of air is as follows.
E = 
Expression for maximum potential difference is that the capacitor can with stand is as follows.
dV = E × d
And, maximum charge that can be placed on the capacitor is as follows.
Q = CV
= 
= 
= 
= 
or, = 10.62 nC
Thus, we can conclude that charge on capacitor is 10.62 nC.