Non of the above because protons and neutrons don’t mix with each one there
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
K5O2
convert grams to moles, divide both by the smallest mole mass, multiply that until hole.
30.5 g K ÷ 39.10 = .78 mol
6.24 g O ÷ 16 = .39 mol
.78 mol ÷ .39 mol = 2.5
.39 mol ÷ .39 mol = 1
2.5 x 2 = 5
1 x 2 = 2
K5O2
It makes the bronze stronger and harder than either of the other two medals
Answer:
C
Explanation:
the n value must always be greater than the l value