The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.
Answer:
Hexaflourine Pentaiodide?
Explanation:
f = flourine (6 = hexa)
i = iodine (5 = penta) + ide
Answer:
energy and the equilibrium constant.
The sign of the standard free energy change ΔG° of a chemical reaction determines whether the reaction will tend to proceed in the forward or reverse direction.
Similarly, the relative signs of ΔG° and ΔS° determine whether the spontaniety of a chemical reaction will be affected by the temperature, and if so, in what way.
ΔG is meaningful only for changes in which the temperature and pressure remain constant. These are the conditions under which most reactions are carried out in the laboratory; the system is usually open to the atmosphere (constant pressure) and we begin and end the process at room temperature (after any heat we have added or which is liberated by the reaction has dissipated.) The importance of the Gibbs function can hardly be over-stated: it serves as the single master variable that determines whether a given chemical change is thermodynamically possible. Thus if the free energy of the reactants is greater than that of the products, the entropy of the world will increase when the reaction takes place as written, and so the reaction will tend to take place spontaneously. Conversely, if the free energy of the products exceeds that of the reactants, then the reaction will not take place in the direction written, but it will tend to proceed in the reverse direction.
Explanation:
so, as you move down a group on the periodic table, the electronegativity of an element decreases because the increased number of energy levels puts the outer electrons very far away from the pull of the nucleus. electronegativity increases as you move from left to right across a period on the periodic table.