<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
<h3>Answer:</h3>
Phosphoric acid reacts with magnesium hydroxide to produce magnesium phosphate and water via the following reaction:
2H3PO4 + 3Mg(OH)2 → Mg3(PO4)2 + 6H2O
(solid) (solid) (solid) (liquid)
<h3>Explaination:</h3>
This is a typical neutralization reaction of an acid with a base to form a salt and water. The reaction is exothermic, gives off heat,
ΔH < 0 , and may be balanced by adding balancing numbers in front, ie adding molecules, in order to ensure that the total number of atoms of each element is the same on the left and right hand sides of the equation.
Doing so we obtain :
2H3PO4 + 3Mg(OH)2 → Mg3(PO4)2 + 6H2O
(solid) (solid) (solid) (liquid)
<h3>hope it helps :)</h3>
Answer: Benzene is less reactive than methylbenzoate and more reactive than Nitrobenzene
Explanation:
This is because the methyl group on the benzene ring is an electron donating group leading to the activation of the ring and subsequently leading to more canonical resonance structure at the intermediate stage of the reaction enhancing the faster reactivity
However for the Nitrobenzene the nitro group is an electron withdrawing group leading to a slower activation and less resonance canonical structure at the reaction intermediate leading to a slower reaction than the reaction of benzene without the nitro group
Answer:
Because it keeps track of all the elements