Answer:
e see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1
Explanation:
This is an ejercise in special relativity, where the speed of light is constant.
Let's carefully analyze the approach, we see the two events at the same time.
The closest event time is
c = (x₁-300) / t
t = (x₁-300) / c
The time for the other event is
t = (x₂- 600) / c
since they tell us that we see the events simultaneously, we can equalize
(x₁ -300) / c = (x₂ -600) / c
x₁ = x₂ - 300
We see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1
Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.
Answer: Option C
<u>Explanation:</u>
Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring. The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.
The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.
Answer:The greater the amount of water that there is it will take longer for the water to freeze because more heat has to be dissipated into the environment
Explanation:
Answer:
Explanation:
Energy of signal being radiated per second on all sides = 71 x 10³ J .
At a distance of 220 m it is spread over an area of 4 π x (220)² because it is spreading uniformly on all sides.
So energy crossing per unit area
= 
= 11.67 x 10⁻² Wm⁻²s⁻¹.
This is the intensity of the signal.
At 2200 m this intensity will further reduce by 100 times
So there it becomes equal to
11.67 x 10⁻⁴ Wm⁻² s⁻¹.
You forgot to add a photo.