The amount or cost that the user of the energy-efficient bulb save during 100h of use will be $0.319.
<h3>How to calculate the cost?</h3>
For the 11.0W bulb, it should be noted that the value will be:
= 11.0 × 100 × (1/1000) × 0.110
= $0.121
The 40W bulb will be:
= 40 × 100 × (1/1000) × 0.110
= $0.44
Therefore, the amount that will be saved will be:
= $0.44 - $0.121
= $0.319
Learn more about cost on:
brainly.com/question/25109150
#SPJ4
I think it's The fossil record. The same animal fossil is in Africa and South America. The animal could have not swim across so its the fossil record
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
Answer: Ok so We already know that velocity is on the x-axis.
Since acceleration = Force / Mass
Here the Force is downward due to the gravitational pull or we can say it is along y-axis.
Since acceleration is directly proportional to force, so acceleration is also along y-axis. This means that velocity & acceleration are perpendicular to each other.
Example:
Let us assume that an aeroplane is flying parallel to the horizontal plane. The aeroplane will experience the acceleration in several directions. One of them here is the gravitational pull which is perpendicular to the the apparent velocity. So the net velocity & its direction will depend upon the vector sum total of all the forces/acceleration acting on it. Also because of this gravitational pull the aeroplane rotates along with the earth, which is a proof that the force/g experienced by it does not go waste.
<h3>Hope this helps have a awesome day/night❤️✨</h3>
Explanation:
I can’t see it’s too blurry