125 W is the power output of this machine.
Answer:
Explanation:
Power is defined as the amount of work done on the system to move that system from its original state within the given time interval. So it can be determined by the ratio of work done with time interval. As work done is the measure of force required to move a system to a certain distance. Work done is calculated as product of force with displacement.
So in the present case, the force is given as 100 N, the displacement is given as 5 m and the time is given as 4 s, then power is

As Work done = Force acting on the machine × Displacement
So 
Power =
=125 W
So, 125 W is the power output of this machine.
INDUCTION MOTOR:-
Speed:-Less speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control
Reliability:-Waste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation
Power density:-Induction produced by squirrel cage rotor inherently limits power density
Accuracy:-Flux vector and field-oriented control allows for some of accuracy of servos
Cost:-Relatively modest initial cost; higher operating costs
PERMANENT MAGNET MORTOR:-
speed:-VFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range
Reliability:-Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments.
power density:-Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types.
Accuracy:-Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors
<span>Cost:-Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly</span>
The answer is 7000 meters.
C-how they are used. An incline plane is used as a ramp and a wedge is used in between something.
Been a while since i've done a problem like this so i might be wrong in the "work" aspect
your system starts with 1200J
you add 700J of heat-
add 700 to 1200
1200+700
and your system does 400J of work
since work is being done by the system, the energy is leaving the system hence you subtract
1900-400
the result is then 1500