Answer:
<em>The final speed of the vehicle is 36 m/s</em>
Explanation:
<u>Uniform Acceleration</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
The vehicle starts from rest (vo=0) and accelerates at a=4.5 m/s2 for t=8 seconds. The final speed is:


The final speed of the vehicle is 36 m/s
Answer:

Explanation:
Light rays coming from moon is blocked by the pencil
so as per figure we know that angle subtended by pencil and angle subtended by moon must be same
so we have

so we have

so we have

Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)
Answer:
d) The 2 athletes reach the same height, because the athletes run with the same speed.
Explanation:
In the whole process , kinetic energy is converted into potential energy .
1/2 m v² = mgh
v² = 2gh
h = v² / 2g
In this expression we see that height attained does not depend upon mass of the object . At the same time it also makes it clear that it depends upon velocity . As the velocity in both the cases are same , height attained by both of them will be same. Hence option d ) is correct.
Answer:
20 N
Explanation:
By Newton's 2nd law,
The rate of change of momentum is directly proportional to the unbalance force applied on the object,
By that you can get the equation,
F = ma
= 5 × 4 = 20 N