Answer:
6.023*10 ²³ molecules
Explanation:
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
given mass of NaCl = w = 58.5 g
As we know the molecular mass of NaCl = m = 58.5 g/mol
Moles can be calculted from the above formula -
n = w / m = 58.5 g / 58.5 g/mol = 1 mol
Since , 1 mol has 6.023*10 ²³ particles ,
Therefore ,
1 mol of NaCl = 6.023*10 ²³ molecules
if I'm not mistaking it would be the second option
Density = Mass/Volume
d= 5 / 4.5
Answer:
A hypertonic solution has increased solute, and a net movement of water outside causing the cell to shrink. A hypotonic solution has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.
Explanation: hope this helps :) sorry if it's wrong :(
Answer is: 5.22·10²² atoms of Iodine.
m(CaI₂) = 12.75 g; mass of calcium iodide.
M(CaI₂) = 293.9 g/mol; molar mass of calcium iodide.
n(CaI₂) = m(CaI₂) ÷ M(CaI₂).
n(CaI₂) = 12.75 g ÷ 293.9 g/mol.
n(CaI₂) = 0.043 mol; amount of calcium iodide.
In one molecule of calcium iodide, there are two iodine atoms
n(I) = 2 · n(CaI₂).
n(I) = 0.086 mol; amount of iodine atoms.
Na = 6.022·10²³ 1/mol; Avogadro number.
N(I) = n(I) · Na.
N(I) = 0.086 mol · 6.022·10²³ 1/mol.
N(I) = 5.22·10²²; number of iodine atoms.