C6H12O6 (s) + 6O2 (g) + 6CO2 (g) + 6H2O(l)
Answer:
Final volume, V2 = 13.18 Liters
Explanation:
<u>Given the following data;</u>
Initial volume = 9.9 L
Initial temperature = 303 K
Final temperature = 403 K
To find the final volume, we would use Charles law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles' law is given by the formula;
Where;
- V1 and V2 represents the initial and final volumes respectively.
- T1 and T2 represents the initial and final temperatures respectively.
Making V2 as the subject formula, we have;


<em>Final volume, V2 = 13.18 Liters</em>
Answer:
Coefficients
Explanation:
Chemical equations are first written as a skeleton equation, which includes how many atoms each element and compound has. Skeleton equations are not 'balanced' because the number of atoms of each element on the left side (reactants) is not equal to the right side (products).
To balance a chemical equation, you can write coefficients in front of single elements and compounds. The coefficient multiplies with each single element and with each element in the compound.
For example, in this skeleton equation:
H₂ + Cl₂ => HCl
Reactants: Products:
2 hydrogen 1 hydrogen
2 chlorine 1 chlorine
Write the coefficient 2 in the products.
H₂ + Cl₂ => 2HCl
Now both reactant and product sides have 2 chlorine and 2 hydrogen, so the equation is balanced.
D. Synthesis cause A + B --> AB
Equation: 2Na + Cl2 --> 2NaCl