I believe I know the answer to #4
ANSWER: Two moles to a first approximation
*Disclaimer* I'm pretty sure I'm right, but I could be wrong
Answer:
Main job of golgi bodies is to sort and package proteins and other substances in a plant cell.
Explanation:
Golgi bodies are also called post office of the cell because it modify and distribute proteins for the cell. First, proteins are made in the organelle of the cell i. e. endoplasmic reticulum. From here, it is send to the Golgi apparatus for modification. Golgi bodies add some special structures with the protein and this protein leaves golgi bodies which is used by the cell where it is needed.
It is important to have the correct bond angles of the different atoms and the shape of the molecule due to following reasons;
Among other properties the polarity of compounds mainly depend upon the shape and bond angles of that particular compound. For example, considering the molecule of water, we already know that it is a polar molecule with partially positive hydrogen atoms and partially negative oxygen atoms and acts as universal solvent. The bond angle in water is about 104.5° with a Bent geometry. Unlike carbon dioxide (CO₂) which has Linear structure with bond angle 180° and is non-polar in nature therefore, the bent geometry in water is responsible for the polarity.
Other properties which can also be predicted by predicting the bond angles along with molecular geometries are;
i) Magnetism
ii) Phase of matter
iii) Color
iv) Reactivity
v) Biological activities <em>e.t.c</em>
<span>Ammonia (NH3) is the combination of Nitrogen and Hydrogen
elements.
=> N2 + 3H2 => 2NH3
Ammonia is basically used as a fertilizer. It is a gas composed of nitrogen and
hydrogen. It is colorless with strong odor. Here are some other uses of Ammonia
aside from fertilizer:
=> used by manufacturer to produce synthetic fiber
=> Used in metallurgical process
Ammonia can be decomposed easily and it produce hydrogen that is very
convenient in welding.
Ammonia’s boiling point is -28.03 F and freezing point is -107.8F.
</span>
If we convert the ounces to grams, there are approximately 283.495 grams of plant fertiliser
If nitrogen has 15% of this, all we have to do is divide this number by 100 to get the mass of 1% and multiply it by 15.
In the end, we end up with the mass of 42.5243 g
Hope I helped! xx