Answer:
P = 96 J
Explanation:
Given that,
Weight of the book, W = mg = 8 N
It is placed at a height of 12 m
We need to find the potential energy of the book. The potential energy of an object is given by the formula as follows :
E = mgh
mg = Weight

So, the potential energy of the book is 96 J.
It will take 13
seconds for the golf ball to hit the ground. The correct answer between
all the choices given is the last choice or letter D. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer: 0.62
Explanation:
Coefficient of friction is defined as the ratio of the moving force (Fm) acting on a body to the normal reaction (R).
Note that the normal reaction acts vertically on the object and is equal to the objects weight (W) i.e W=R
Since W = mg, W = 38.4 ×10
W= 384N =R
Normal reaction = 384N
The horizontal force acting on the body will be the moving force which is 238N
Coefficient of friction = Fm/R
Coefficient of friction = 238/384
Coefficient of friction = 0.62
Therefore, coefficient of kinetic friction between the box and the floor is 0.62
Answer:
the tension force of the string on the stone is 30 N
Option d) 30 N is the correct answer.
Explanation:
Given the data in the question;
mass m = 0.2 kg
radius r = 0.6 m
θ = 150 revolutions = 300π rad
time t = 60 seconds
we know that; Angular speed ω = θ / t
we substitute
ω = 300π / 60
ω = 5π rad
Linear speed of stone u = ω × r
we substitute
u = 5π × 0.6
u = 3π m/s
The tension force of the string on the stone is equal to centripetal force, which aid it move in circle;
so
T = mv² / r
we substitute
T = [ 0.2 × (3π)² ] / 0.6
T = 17.7652879 / 0.6
T = 29.6 ≈ 30 N
Therefore, the tension force of the string on the stone is 30 N
Option d) 30 N is the correct answer.