Calcium forms an ion with a positive 2 charge and chlorine forms an ion with a negative one charg, so the formula is <span>CaC<span>l2</span></span>
Group 1 metals and group 2 metals form positive ions by losing 1 and 2 electrons respectively. Non-metals in group 17 gain 1, group 16 gain 2 and group 15 gain 3. Elements which lose electrons form positive ions while elements that gain electrons form negative ions.
To write a formula, you must balance charges so the overall charge is zero. A simple way to do this is to swap the # of the ion's charge and make it the subscript of the other ion. However, leave off the number 1 and reduce to lowest whole number ratio.
Answer:
The correct answer is 574.59 grams.
Explanation:
Based on the given information, the number of moles of NH₃ will be,
= 2.50 L × 0.800 mol/L
= 2 mol
The given pH of a buffer is 8.53
pH + pOH = 14.00
pOH = 14.00 - pH
pOH = 14.00 - 8.53
pOH = 5.47
The Kb of ammonia given is 1.8 * 10^-5. Now pKb = -logKb,
= -log (1.8 ×10⁻⁵)
= 5.00 - log 1.8
= 5.00 - 0.26
= 4.74
Based on Henderson equation:
pOH = pKb + log ([salt]/[base])
pOH = pKb + [NH₄⁺]/[NH₃]
5.47 = 4.74 + log ([NH₄⁺]/[NH₃])
log([NH₄⁺]/[NH₃]) = 5.47-4.74 = 0.73
[NH₄⁺]/[NH₃] = 10^0.73= 5.37
[NH₄⁺ = 5.37 × 2 mol = 10.74 mol
Now the mass of dry ammonium chloride required is,
mass of NH₄Cl = 10.74 mol × 53.5 g/mol
= 574.59 grams.
Answer:
Explanation:
Just saw your request regarding answering this so here it is:
All of them belong of Group 1 in periodic table and thus are highly reactive! Pattern of reactivity for Group 1 (Alkali metals) increases as you move down the group as their radius keeps increasing and thus electrons can be easily lost. Thus, to ID the lumps, Sheena should look at their reactivity and she should get the following trend:
Most reactive: Potassium (K)
Intermediate: Sodium (Na)
Least reactive: Lithium (Li)
Hope it helps!
Phenolphthalein
In acid it is colourless and in water also colourless