When an ion loses electrons, it becomes a positive ion even though it does not lose protons. If there are more protons than electrons in the ion, the ion will have a positive charge.
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Protactinium
Hshsbsbwhwhhsnsnanananananababsbsbsbsbsbsbababjaajajajnsnsnsnana
Q = mct
-Q= energy in Joules
-m = mass in grams
-c= specific heat capacity in J/g degree C
-t = delta temperature in degrees Celsius
So,
Q = m c t
Q = (7 grams)(0.448J/g C)(750 C - 25 C)
Q = 2273.6 J
Your final answer = 2273.6 Joules