Except catalyst because catalyst typically speed up a reaction by reducing the activation energy or changing the reaction mechanism.
ones that are answered through observing :)
Answer:
c. Many of their bonds are C-C and C-H
Explanation:
The majority of bonds in carbohydrates and lipids( being an organic compound) are C-C and C-H. Like glucose, fructose or galactose ,etc.
These bonds are strong and do require a lot of energy to break. Thus, a lot of energy are required to break carbs and lipids into simpler compounds.Therefore, carbohydrates and lipids have high potential energy.
The correct answer is c.
Answer:
zince chloride will be formed and hydrogen gas will be librated.
Explanation:
When dilute HCl is added to zinc pieces, a rection will takes place as follows :

It means that zinc chloride will form when zinc reacts with dilute HCL. Also hydrogen gas will produced.
As zinc is more reactive than hydrogen, it displaces hydrogen from its solution and forms zinc chloride. The form product is white in color and H₂ is an odorless gas.
Hence, zince chloride will be formed and hydrogen gas will be librated.
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>