Answer:
3.18 mol
Explanation:

n(CO2) = mass/ Mr.
= 25.5 / 16
= 1.59 mol
As per the equation above,
n(LiOH) : n(CO2)
2 : 1
∴ 3.18 : 1.59
Answer:
n = 2.58 mol
Explanation:
Given data:
Number of moles of argon = ?
Volume occupy = 58 L
Temperature = 273.15 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 58 L = n × 0.0821 atm.L/ mol.K × 273.15 K
58 atm.L = n × 22.43 atm.L/ mol.
n = 58 atm.L / 22.43 atm.L/ mol
n = 2.58 mol
The mass of one mole of water it is 18 amu, but you need to find the mass of a molecule of water, therefore you calculate the mass of one mole of water, which is 18 amu and you divided by Avogadro's number which is 6,022 x 10^23. The result is 2,989 x 10^-23. Hope I helped you. If you have any questions ask :) Good luck.
Answer:
12.50g
Explanation:
T½ = 2.5years
No = 100g
N = ?
Time (T) = 7.5 years
To solve this question, we'll have to find the disintegration constant λ first
T½ = In2 / λ
T½ = 0.693 / λ
λ = 0.693 / 2.5
λ = 0.2772
In(N/No) = -λt
N = No* e^-λt
N = 100 * e^-(0.2772*7.5)
N = 100*e^-2.079
N = 100 * 0.125
N = 12.50g
The sample remaining after 7.5 years is 12.50g
The Equator is an imaginary line around the middle of the Earth. It is halfway between the North and South Poles, and divides the Earth into the Northern and Southern Hemispheres. The Equator is the line of 0 degrees latitude. Each parallel measures one degree north or south of the Equator, with 90 degrees north of the Equator and 90 degrees south of the Equator. The latitude of the North Pole is 90 degrees N, and the latitude of the South Pole is 90 degrees S hope this helps