Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.
Answer:
a
b

c

Explanation:
From the question we are told that
The reaction of cyclobutane and oxygen is

ΔH°f (kJ mol-1) : C4H8(g) = 27.7 ; CO2(g) = -393.5 ; H2O(g) = -241.8 ΔH° = kJ
Generally ΔH° for this reaction is mathematically represented as
![\Delta H^o _{rxn} = [[4 * \Delta H^o_f (CO_2_{(g)} ) + 4 * \Delta H^o_f(H_2O_{(g)} ] -[\Delta H^o_f (C_2H_6_{(g)} + 6 * \Delta H^o_f (O_2_{(g)}) ] ]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%20_%7Brxn%7D%20%3D%20%5B%5B4%20%2A%20%5CDelta%20H%5Eo_f%20%28CO_2_%7B%28g%29%7D%20%29%20%2B%204%20%2A%20%5CDelta%20H%5Eo_f%28H_2O_%7B%28g%29%7D%20%5D%20-%5B%5CDelta%20H%5Eo_f%20%28C_2H_6_%7B%28g%29%7D%20%2B%206%20%2A%20%5CDelta%20H%5Eo_f%20%28O_2_%7B%28g%29%7D%29%20%5D%20%5D)
=> ![\Delta H^o _{rxn} = [[4 * (-393.5) + 4 * (-241.8) ] -[ 27.7 + 6 * 0]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%20_%7Brxn%7D%20%3D%20%5B%5B4%20%2A%20%28-393.5%29%20%2B%204%20%2A%20%28-241.8%29%20%5D%20-%5B%2027.7%20%2B%206%20%2A%200%5D)
=>
Generally the total heat capacity of 4 mol of CO2(g) and 4 mol of H2O(g), using CCO2(g) = 37.1 J K-1 mol-1 and CH2O(g) = 33.6 J K-1 mol-1. C = J K-1 is mathematically represented as
![H = [ 4 * C_{CO_2_{(g)}} + 6* C_{CH_2O_{(g)}}]](https://tex.z-dn.net/?f=H%20%20%3D%20%5B%204%20%2A%20C_%7BCO_2_%7B%28g%29%7D%7D%20%2B%206%2A%20C_%7BCH_2O_%7B%28g%29%7D%7D%5D)
=> ![H = [ 4 * 37.1 + 6* 33.6 ]](https://tex.z-dn.net/?f=H%20%20%3D%20%5B%204%20%2A%2037.1%20%2B%206%2A%2033.6%20%5D)
=> 
From the question the initial temperature of reactant is 
Generally the enthalpy change(
) of the reaction is mathematically represented as

=> 
=> 
Ca3(PO3)2
Oxidation numbers:
Ca ---- +2
P----x
O---- -2
+2*3 +x*2 - 2*6 = 0
6 + 2x -12 = 0
2x = 6
x = +3
Oxidation number of P is +3.
Well could u list the layers for me? It would be helpful to answer
Explanation:
The current study presents a method for automating the Koppen–Garcia climate classification using a GIS module. This method was then applied in a case study of the Lerma-Chapala-Santiago watershed to compare time series data on climate from 1960 to 1989, 1981 to 2010, and 1960 to 2010. The kappa statistic indicated that the climate classifications of the generated model had a perfect degree of agreement with those of a prior nonautomated study. The climate data from the period 1960 to 2010 were used to create a climate map for the watershed. Overall, the dominant climates were dry, semiarid, temperate, and semiwarm temperate with a summer rainfall pattern. A comparative analysis of climate behavior between 1960 and 1989 and between 1981 and 2010 showed changes in temperature and extreme temperatures over 13.6% and 9.9%, respectively, of the watershed; the presence or absence of mid-summer drought also changed over 0.8% of the watershed. The module developed herein can be used to classify climates across all of Mexico, and data of varying spatial resolution and coverage can be inputted to the module. Finally, this module can be used to automate the creation of climate maps or to update climate maps at diverse spatial-temporal scales.