I think one of them is composed primarily of plant material,
and the other is composed primarily of dead dinosaurs.
Answer:
the average speed in annual work out is 46.5
Answer:
The electron will get at about 0.388 cm (about 4 mm) from the negative plate before stopping.
Explanation:
Recall that the Electric field is constant inside the parallel plates, and therefore the acceleration the electron feels is constant everywhere inside the parallel plates, so we can examine its motion using kinematics of a constantly accelerated particle. This constant acceleration is (based on Newton's 2nd Law:

and since the electric field E in between parallel plates separated a distance d and under a potential difference
, is given by:

then :

We want to find when the particle reaches velocity zero via kinematics:

We replace this time (t) in the kinematic equation for the particle displacement:

Replacing the values with the information given, converting the distance d into meters (0.01 m), using
, and the electron's kinetic energy:

we get:
Therefore, since the electron was initially at 0.5 cm (0.005 m) from the negative plate, the closest it gets to this plate is:
0.005 - 0.00112 m = 0.00388 m [or 0.388 cm]
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now