Answer:
ring and ball apparatus
Explanation:
In this experiment, the ball cannot pass through the ring due to its expansion, but the same ball can pass through the same ring when it is cooled down.
Answer:
The air-water interface is an example of<em> </em>boundary. The <u><em>transmitted</em></u><em> </em> portion of the initial wave energy is way smaller than the <u><em>reflected</em></u><em> </em> portion. This makes the <u><em>boundary</em></u> wave hard to hear.
When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can <u><em>travel directly to your ear</em></u>.
Explanation:
The air-to-water sound wave transmission is inhibited because more of reflection than transmission of the wave occurs at the boundary. In the end, only about 30% of the sound wave eventually reaches underwater. For sound generated underwater, all the wave energy is transmitted directly to the observer. Sound wave travel faster in water than in air because, the molecules of water are more densely packed together, and hence can easily transmit their vibration to their neighboring molecules, when compared to air.
Answer : Capacitors
Explanation : Capacitors are normally placed on transmission or distribution lines when to reduce inductive reactance.
This is because it enhances electromechanical and voltage stability , limit voltage dips at network nodes and reduces the power loss.
So, we can say that inductive reactance normally replace by the capacitors.
Answer:
(A) We are using them faster than they are replenished by nature