Answer:
Explanation:
His Kinetic energy = 1/2 m v^2
v = 5 m/s
m = 75 kg
Ke = 1/2 75 * 5^2
Ke = 937.5 Joules
This will be converted to PE when he reaches the maximum height he reaches. In other words KE = PE
PE = m * g * h
m = 75
g = 9.81
h = ?
PE = 937.5
937.5 = 75 * 9.81 * h
937.5 = 735.75 * h
937.5/735.75 = h
h= 1.27 meters
Answer:
D.vibrations that cause changes in air pressure
Explanation:
Sound is a type of wave.
A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.
Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.
Answer:
A) microwaves and ultraviolet
Explanation:
this is the spectrum in order:
radio waves
microwaves
infra red
visible light
ultraviolet
X rays
gamma rays
Kinetic energy is movement, thus movement would be a characteristic that allows an object to have kinetic energy
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.