Protons have a mass of 1
Neutrons have a mass of 1
So 13*1 + 14*1 = Mass number 27
Answer:
The correct answer is c) 134L
Explanation:
We use the formula PV =nRT. The normal conditions of temperature and pressure are 273K and 1 atm, we use the gas constant = 0, 082 l atm / K mol.
1 atm x V = 5, 98 mol x 0, 082 l atm / K mol x 273 K
V = 5, 98 mol x 0, 082 l atm / K mol x 273 K / 1 atm
V = 133, 86828 l
Answer:
Nickel and Titanium
Explanation:
Nitinol is an alloy of Nickel and Titanium. It posesses two properties such that,
- The shape memory effect
- Super elasticity
Shape memory is the ability of nitinol to undergo deformation at one temperature, stay in its deformed shape when the external force is removed.
Superelasticity is the ability for the metal to undergo large deformations and immediately return to its undeformed shape upon removal of the external load.
Hence, the correct option is (b) "Nickel and Titanium".
Because there is less friction on the marble floor.
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.