Answer:
The answer to your question is a = 0.25 m/s²
Explanation:
Data
mass = m = 400 kg
Force = F = 100 N
acceleration = a = ? m/s²
Process
To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.
Formula
F = ma
solve for a
a = 
Substitution

Simplification and result
a = 0.25 m/s²
Answer:
Material's density
Explanation:
Seismic waves travel at different rates of speed based on a material's density. Hopefully, you understand that the Earth has three main layers: the crust, mantle, and core. Earthquake waves move faster through solids.
Answer:
Explanation:
AVerage acceleration is the cjange in velocity with time
a = v-u/t
v is the final velocity = 48m/s
u is the initial velocity = 40m/s
t is the time = 6.5s
a = 48-40/6.5
a = 8/6.5
a = 1.23m/s²
Hence the magnitude of the car’s average acceleration during this period is 1.23m/s²
no i dont agree, because a glass bowl is shiny but its not a metal. just because some metals are shiny doesnt make all metals shiny
Consider a long train moving at speed v. Now consider a passenger throwing a ball inside this train, towards the back of the train, with same velocity v (but in the opposite direction of the train movement).
- A passenger inside the train will see the ball moving with speed v
- For an observer outside the train, however, the ball will appear as still. In fact, for him the ball will have a speed v (given by the movement of the train) -v (velocity of the ball but moving in the opposite direction), so the net velocity will be v+(-v)=0.