Answer:
98N and 147N
Explanation:
We have the following information:

We can find the static fricton force as follow,

Where N is the normal force (mg)

Static friction force at 147N is greater than the force applied hence body does not move.

The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
The answer is decompression melting
W=gm
where g - gravitation
m - mass
w - weight
as gravitation equals to zero, multiplying by 0 gives W=0
It is not possible to tell whether and object is heavy or light